
Prediction of mechanical properties in spheroidal cast iron
by neural networks

S. Calcaterraa, G. Campanab, L. Tomesanib,*

aSABIEM Foundries, Bologna, Italy
bDepartment of Mechanical Construction Engineering, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy

Accepted 22 December 1999

Abstract

An arti®cial neural network-based system is proposed to predict mechanical properties in spheroidal cast iron. Several castings of various

compositions and modules were produced, starting from different inoculation temperatures and with different cooling times. The

mechanical properties were then evaluated by means of tension tests. Process parameters and mechanical properties were then used as a

training set for an arti®cial neural network. Different neural structures were tested, from the simple perceptron up to the multilayer

perceptron with two hidden layers, and evaluated by means of a validation set. The results have shown excellent predictive capability of the

neural networks as regards maximum tensile strength, when the variation range of strength does not exceed 100 MPa. # 2000 Elsevier

Science S.A. All rights reserved.
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1. Introduction

The great number of variables that determine the result

of a spheroidal cast iron production process has historically

led to insuperable dif®culties in developing reliable

models to predict the mechanical properties of castings

on the basis of the process variables only, chemical compo-

sition being included. The output characteristics, in fact,

depend on both the matrix structure and the shape, size

and distribution of the graphite spheroids. Matrix and spher-

oids, in turn, depend on the chemical composition of the

melt, on the desulphurizing, spheroidizing and scorifying

methods applied in the treatment ladle, on the inoculation

method and ®nally, on the time elapsing between these

events and the casting in the mould [1]. Moreover, the

mechanics of spheroid formation itself has not yet been

completely understood and many models are still in com-

petition [2,3].

Added to this is the fact that every cast iron production

plant has historically developed its own process, differing

from those of others in many factors, such as the composi-

tion of the charge, the characteristics of the moulding sand

and its compacting, the casting method, etc. These produc-

tion methods are real `̀ hidden variables'' of the process,

which act through a systematic law on the ®nished product,

making it very dif®cult to correlate the results between

pieces produced in different plants.

For this reason, although ®nite element analyses (FEM) or

®nite difference analyses (FDM) can furnish information on

cooling rates and on the time elapsing before solidi®cation,

the chemical and physical characteristics of all the process

elements being perfectly known, they will not be able to

successfully correlate this knowledge with the mechanical

properties of the casting [4].

An alternative approach to predicting mechanical proper-

ties in spheroidal cast iron products is based on the utiliza-

tion of an arti®cial neural network (ANN). ANNs consist of

many computational elements, operating in parallel, con-

nected by links with variable weights which are typically

adapted during the learning process. Although the develop-

ment of detailed mathematical models began in the 1960s, it

is only in recent years that improvements in the science of

ANNs have allowed the development of manufacturing

applications [5±7].

In the utilization of ANNs, a fundamental step consists of

determining the input±output data necessary for the training

stage. They can be obtained either from a process model or

through actual experimentation. Since analytical correlation

between input and output variables in the case study is
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subject to the above-mentioned limitations, the latter

method has been adopted.

This approach attains the goal of eliminating the need to

declare to the system all those process variables which are

more typical of the foundry than of the particular component

produced, must be considered as constants. At the same

time, it gives the correlation between process variables and

product characteristics which the scienti®c literature cannot

provide. Moreover, to the knowledge of the authors, neural

network systems have not yet been used in spheroidal cast

iron technology.

In this paper, the production of very simple cylindrical

spheroidal iron castings of different diameter has been

studied, with the aim of verifying the possibility of predict-

ing the mechanical properties of the castings by means of

neural network-based systems with supervised training.

A limited number of castings were produced in 10 melts

and the mechanical properties evaluated in order to obtain

the input±output patterns used to train the neural networks.

The training stage for the neural networks was conducted

using the back-propagation algorithm.

Different ANN structures have been tested, from the

simple perceptron up to the multilayer perceptron with

two hidden layers. For each ANN, different learning rates,

iteration numbers, activation functions, and initial random

weights have been considered.

Based on the encouraging results of this work, the next

step in the research will be to extend the predictive cap-

ability of the ANN system to more complex shapes of

industrial relevance.

2. Experimental

2.1. Moulding materials and test pieces

The mould consisted of natural sand AFS 60±65, bonded

with water and 0.5% bentonite, to give 3±3.5% ®nal moist-

ure content, 40±45 mm compactability and 1500±2000 g/

cm2 green compressive strength. The mould used for the

experiments contained the horizontally placed test piece, fed

by a central sprue through two lateral gating systems with

risers (Fig. 1). This mould design determines a plane of

symmetry with respect to plane AB in Fig. 1, so that the two

sides of the casting undergo identical ®lling sequences. This

makes it possible to cut from the casting both a tension test

specimen and a specimen for metallography, having strictly

correlated characteristics.

2.2. Charge materials

The charge materials, including the percentages used for

the production, are listed in Table 1. The charge materials

were melted in a cupola, from which the melt was then

poured into the treatment ladle. Ten melts were produced for

the actual investigation.

2.3. Desulphurizing and spheroidizing

Desulphurizing and spheroidizing treatments were

carried out in the ladle by means of the Gazal method,

which uses the mixing action of preheated nitrogen ¯ux from

the bottom. Desulphurizing was performed by means of

0.8% of CaC, and spheroidizing by means of 2.1% of

FeSiMg5. After spheroidizing, the top of the ladle was

removed and the melt was deslagged and poured into the

casting ladle.

2.4. Inoculation

The casting ladle was preheated to avoid temperature

losses. Inoculation was performed by means of 0.35% of

FeSi75. After inoculation the temperature was measured and

part of the melt was poured into the chill mould for spectro-

Fig. 1. Casting geometry and location of the specimens.

Table 1

Details of the charge materials

Charge materials Percentage

Pig iron 25.8

Mild steel 21.5

Ductile iron scrap 38.7

Coke 9.0

CaCO3 2.5

Desulphurizing agents 2.4

Graphite 0.1

Nomenclature

Nm number of the melt

Nc number of the casting

Tm inoculation temperature (8C)

ttm time to mould (s)

Uactual ultimate strength (MPa)

é casting diameter (mm)
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graphic analysis of the SG cast iron produced. The results of

the analysis are summarized in Table 2 for the 10 melts

produced.

2.5. Casting

The melt was then poured into the moulds. For each ladle,

different moulds were poured (from two to four), in order to

consider the time between the ladle temperature evaluation

and the beginning of mould pouring as a process parameter.

Each casting was marked for identi®cation both in the sand

and in the box, in order to allow the time to mould to be

measured. All of the ®lling times were kept within a narrow

range for each casting diameter: 16±20 s for é140 mm; 7±

9 s for é70 mm; 5±6 s for é35 mm. After one day of

cooling, the moulds were carefully broken.

2.6. Tension tests

Tension test specimens were extracted from the axis of the

castings and tested on an INSTRON 8033 machine, with

0.056 mm/s ram speed. Ultimate load and elongation were

recorded. The results are shown in Table 3.

2.7. Metallography

In a position symmetrical to the tension test specimen, a

second specimen was extracted for metallography and hard-

ness measurements.

Metallographic specimens were polished and etched in

3% nickel solution. The microstructures were examined

optically to observe the morphology and nodularity of the

graphite. The amounts of the different phases were mea-

sured, in order to assess the quality of the casting produced.

3. Neural networks

3.1. General

ANNs are mathematical models constituted by several

neurons, arranged in different layers (input, hidden and

output), interconnected through a complex network. They

solve a problem by means of learning rather than by speci®c

programming based on well-de®ned rules. In a feed-forward

ANN, each input node transmits a signal to each input

neuron which after processing, passes on the results to all

the neurons belonging to the hidden layer(s). The hidden

layer neurons process such signals and then send their

outputs to the output layer neurons which lastly, after

processing these inputs, generate the output signals of the

network. No connections exist among neurons belonging to

the same layer. Although each neuron can have several

inputs it gives only one output signal which depends on

the input signals, the weights of connections, the threshold

value and the activation functions.

Table 2

Composition of the melts

Melt number (Nm) C (%) Si (%) Mn (%) P (%) S (%) Cr (%) Ni (%) Cu (%) Sn (%) Mg (%) Mo (%)

1 3.326 2.086 0.131 0.022 0.012 0.021 0.007 0.532 0.030 0.045 0.010

2 3.471 2.225 0.140 0.020 0.022 0.022 0.008 0.052 0.079 0.042 0.013

3 3.330 2.230 0.090 0.020 0.009 0.020 0.005 0.850 0.020 0.050 0.012

4 3.270 2.290 0.087 0.021 0.008 0.021 0.004 0.057 0.077 0.047 0.009

5 3.400 1.980 0.063 0.018 0.012 0.054 0.003 0.490 0.017 0.054 0.010

6 3.320 3.570 0.140 0.017 0.014 0.024 0.007 0.083 0.047 0.076 0.014

7 3.570 3.560 0.135 0.013 0.018 0.025 0.012 0.100 0.019 0.118 0.228

8 3.250 2.590 0.099 0.029 0.009 0.019 0.007 0.055 0.053 0.040 0.010

9 3.230 2.410 0.094 0.027 0.005 0.017 0.007 0.136 0.028 0.035 0.010

10 3.485 2.355 0.119 0.015 0.005 0.038 0.007 0.051 0.025 0.039 0.012

Table 3

Details of the experimentation

Nm Tm Nc é ttm Uactual

1 1365 1A 140 145 568

1B 140 170 583

1C 70 101 570

2 1327 2A 140 111 464

2B 140 133 462

2C 70 72 509

2D 70 86 489

3 1338 3A 140 115 590

3B 140 143 566

4 1345 4A 140 57 549

4B 140 92 503

5 1342 5A 140 130 593

5B 140 165 606

6 1292 6A 70 96 526

7 1280 7A 70 140 458

7B 70 155 436

8 1327 8A 35 128 523

8B 35 113 536

9 1352 9A 35 144 521

9B 35 127 539

10 1373 10A 70 75 569

10B 70 94 553
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The output Xi produced by the neuron i in the layer l is

given by the following relationship:

Xi � f Wi;0 �
Xn

j�1

Wi;jXj

 !
(1)

where f is the activation function, n the number of elements

in the layer lÿ1, and Wi,j the weight associated with the

connection between the neuron i in the layer l and the neuron

j in the layer lÿ1 whose output is Xj. Usually, the threshold

value X0 is constant and equal to 1 so that the corresponding

weight Wi,0 (offset or bias) shifts the activation function

along the abscissa axis.

In supervised learning, a data set containing the input

patterns and the corresponding output patterns is used to

train the network. An iterative algorithm adjusts the weights

of connections so that the responses y to the input patterns

generated at output neurons, according to Eq. (1), are as

close as possible to their respective desired responses d. This

is achieved by minimizing the learning error, de®ned by the

mean square error (MSE)

MSE � 1

QN0

XQ

m�1

XN0

n�1

�dn�m� ÿ yn�m��2 (2)

where N0 is the number of outputs and Q the number of

training sets.

Since the desired responses are known at the output level,

the local error dÿy can be easily calculated for output

neurons; conversely, the desired responses at the hidden

layer level are unknown so that the local error for hidden

layer neurons cannot be determined. This problem was

overcome by the back-propagation algorithm [8]. It works

by back-propagating the error signals from the output layer

neurons to those of the hidden layer, with one pattern

presentation at a time. At each presentation cycle K, a

forward phase to determine the output errors is followed

by a backward one to propagate the error signals among the

hidden layer neurons. The weights of connections are

adjusted using the following equation:

DWi;j � Wi;j�K � 1� ÿWi;j�K� � ÿZDjXi (3)

where Z is the learning rate, is the parameter controlling the

stability and the rate of convergence, and Dj the derivative of

the MSE. This, when j is an output neuron, is given by

Dj � �dn�m� ÿ yn�m��f 0�Pj� (4)

where f0(Pj) is the derivative of the activation function, and

when j is a hidden layer neuron and k an output neuron, it is

Dj � f 0�Pj�
XN0

k�1

DkWk;j (5)

The weights of connections are repeatedly adjusted until

the least MSE is obtained. A back-propagation iteration is

completed when Eq. (3) is applied to all of the neurons in the

network; then the process starts again with a new input±

output pattern presentation.

Once the weights are adjusted, the performance of the

trained network can be tested by applying input patterns not

included in the training set. To this purpose, the general-

ization error, de®ned as the MSE between the output gen-

erated in response to an input not presented during training

and the desired one, is used to quantify the predictive

performance of neural networks.

3.2. Training of neural networks

Before training, the network architecture must be de®ned.

As a general rule, the number of neurons must be large

enough to form a map region that is as complex as necessary

for a given problem. However, it must not be so large that

many of the necessary weights of connections cannot be

accurately estimated from the available training data.

Furthermore, a trained ANN is very effective only if high

generalization performance is achieved.

In the problem considered, 14 input neurons were used in

order to predict the value of ultimate strength in the single

output neuron. The meanings of the input neurons are given

in Table 4. Normalization of the values was obtained by

dividing each value of the training set by the maximum value

of the speci®c variable considered.

Several feed-forward fully connected ANNs were inves-

tigated, considering different topologies (number of layers),

activation functions, learning rates and initial random

weights. Each network was trained to different number of

iterations. The summary of the investigated topologies is

represented in Table 5.

3.3. Validation of the neural network

The capability of ANNs to correctly generalize was

checked using some input±output data not included in the

training set. They have been chosen among the entire

Table 4

Input neurons to the ANN

Neuron number Process variable

1 Carbon (%)

2 Silicon (%)

3 Manganese (%)

4 Sulphur (%)

5 Phosphorus (%)

6 Copper (%)

7 Tin (%)

8 Nickel (%)

9 Molybdenum (%)

10 Magnesium (%)

11 Chromium (%)

12 Ladle temperature (8C)

13 Time to mould (s)

14 Module (volume/surface) of the casting (mm)
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experimental set on the basis of the following considera-

tions:

1. Each input neuron variable of the validation set must be

within the range de®ned by the entire training set for

that variable.

2. In the training set there is no sample of the same casting

number and diameter, which thus differs only in the time

to mould.

The latter condition has been introduced for the purpose of

avoiding undesirable good results induced by the presence of

`̀ similar'' samples in the training and validation sets. As a

result, the samples used for validation of all the investigated

topologies are those indicated in Table 6.

The validation set is thus mainly suited to verify the

ability of the ANN to predict mechanical properties in

castings of different melt composition. Nevertheless, it is

still possible to verify the predictive capability of the net-

work on the time to mould parameter, by considering the

results of the samples which belong to the same melt namely,

4A±4B and 9A±9B. It is worth noting that the sign of

strength variation with the time to mould parameter is not

consistent throughout the experiments, but depends on the

melt and on the diameter of the casting; thus, it is of

particular relevance in the context of strength prediction.

The possibility of directly verifying the network capabil-

ity on castings of various diameters (or cooling rates) is not

so easy because it is impossible to pour two moulds at the

same time with the same ladle. Nevertheless, the importance

of this parameter is such that good results will implicitly

validate it.

Table 5

ANN topologies investigated

Single layer perceptron (SLP)

Activation function, linear (AFL) and sigmoidal (AFS)

Learning rate (LR)�0.03

Connection weights (CW): 0.1 and <1.0

Number of iterations (NI): 20 000 and 100 000

Multilayer perceptron (MLP) with one hidden layer (1HL) with 14 neurons

Learning rate (LR)�0.03, 0.07

Activation functions, linear (AFL) and sigmoidal (AFS) for the HL,

sigmoidal for output neuron

Connection weights (CW): <0.1

Number of iterations (NI): 20 000, 40 000, 60 000, 80 000 and 100 000

Multilayer perceptron (MLP) with two hidden layers (2HL) with 14

neurons each

Learning rate (LR)�0.03, 0.07

Activation functions, linear (AFL) and sigmoidal (AFS) for the HLs,

sigmoidal for output neuron

Connection weights (CW): <0.1

Number of iterations (NI): 20 000, 40 000, 60 000, 80 000, 100 000

Table 6

Results (selected)

ANN topology Nc Upredicted Uactual D (%)

SLP-AFL, CW: 0.1, NI: 20 0000, LR: 0.03 4A 575 549 4.8

4B 537 503 6.7

1C 551 570 ÿ3.3

9A 583 523 11.5

9B 599 536 11.8

SLP-AFS, CW: 1.0, NI: 20 000, LR: 0.03 4A 518 549 ÿ5.7

4B 494 503 ÿ1.9

1C 558 570 ÿ2.0

9A 547 523 4.6

9B 557 536 4.0

MLP-1HL, AFS, CW: 0.1, NI: 20 000, LR: 0.07 4A 551 549 0.4

4B 517 503 2.9

1C 560 570 ÿ1.7

9A 534 523 2.0

9B 548 536 2.2

MLP-1HL, AFS, CW: 0.1, NI: 40 000, LR: 0.07 4A 541 549 ÿ1.5

4B 497 503 ÿ1.2

1C 572 570 0.3

9A 538 523 2.8

9B 558 536 4.2

MLP-1HL, AFL, CW: 0.1, NI: 20 000, LR: 0.07 4A 533 549 ÿ2.9

4B 502 503 ÿ0.3

1C 562 570 ÿ1.3

MLP-2HL, AFL, CW: 0.1, NI: 20 000 LR: 0.03 4A 566 549 3.2

4B 532 503 5.8

1C 548 570 ÿ3.7

9A 555 523 6.2

9B 570 536 6.4
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The results of all the trained ANNs on the validation set

are summarized in Table 6, by giving the predicted value of

ultimate strength, the actual value and the percentile differ-

ence. Due to the large number of network topologies and

conditions investigated, only selected values are represented

here, those effectively pertinent to the discussion.

In some cases, to improve the predictive capability of the

network the training set has been enlarged with the addition

of samples taken from the validation set. In these cases the

validation set is reduced, as evidenced in Table 6.

4. Discussion

The SLP network topologies gave maximum percentile

errors in the range 6±15%, which is quite high, in view of the

limited variation range of ultimate strength. The best result

(MSE�4.2%, Dmax�5.7%) was found by using sigmoidal

activation function, initial weights below 1.0 and 20 000

iterations. A greater number of iterations always led to a

decrease in the predictive capability.

The MLP network topology with one hidden layer

improved prediction accuracy, especially by using sigmoidal

activation functions. Good results were found with 20 000

iterations (MSE�2.4%, Dmax�2.9%) and 40 000 iterations

(MSE�2%, Dmax�4.2%). Greater number of iterations

always led to a decrease in both the MSE and maximum

error.

The learning rate parameter was found to be very effective

on prediction accuracy, the value 0.07 giving the best results.

Attempts were made to improve network performance by

enlarging the training set with samples taken from the

validation set (and thus reducing it). As an example, samples

9A±9B were added to the training set and samples 4A±4B±

1C were the residual validation set. In this case (the ®fth in

Table 6), the maximum error is approximately 2.95%, thus

unchanged with respect to the previous network considered.

This means that the couple 9A±9B is not helpful in order to

better describe the behaviour of the system. Similar con-

siderations come from other attempts. Consequently, it can

be stated that the actual training set is quite meaningful and

better performances of the network can be achieved only if

many other samples are added to it.

The MLP network topology with two hidden layers

showed lower prediction accuracy, with maximum percen-

tile errors in the range 6.5±12%. The best result

(MSE�5.6%, Dmax�6.4%) was obtained by using linear

activation function on both the hidden layers and the output

neuron, 20 000 iterations, a learning rate of 0.03 and random

weights below 0.1.

The sensitivity of the system to the time to mould para-

meter is very good. In fact, by considering the predicted and

actual values of strength in the 4A±4B and 9A±9B samples

(identical in melt and diameter but with different times to

mould), it becomes evident that the network ever predicts the

right variation, even if this does not have the same direction.

In order to keep the effectiveness of prediction within the

limited number of specimens considered, the variation range

in tensile strength has been kept below 100 MPa. The extent

of this range could be enlarged by increasing the size of the

training set.

Attempts were also made to predict the elongation of the

specimens by means of the ANN system. These experiments

are not reported here because they failed to be effective, with

errors even beyond 100% in some cases. This behaviour can

be related to the considerable range of variation in elonga-

tion measurements, depending not only on the accuracy of

the measurement, which is quite high [9], but also on the

high variance of the variable itself. Consequently, the ANN

system considers these random variations as if they were

representative of real correlations and assigns wrong weights

to the neurons. Only statistical processing of the variable

could perhaps improve the results of the network, but this

would be unfeasible for reasons of economy and simplicity.

In order to overcome this dif®culty, attempts can be made

to develop ANN systems with modi®ed input patterns,

provided by both process variables and micrographic results.

5. Conclusions

� This study has shown the capability of an ANN-based

system to predict the tensile strength in spheroidal cast

iron products. Input values to the network were: chemical

composition of the melt, inoculation temperature, time

before casting and diameter of the castings.

� Several ANN structures have been tested, the MLP with

one hidden layer giving the best results.

� The maximum errors on the validation sets varied from 3

to 4% in different conditions of learning rates and initial

random weights when the number of iterations was kept

below 40 000.

� Due to the limited number of specimens considered, the

variation range of tensile strength must be kept below

100 MPa to ensure effectiveness of the prediction.
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